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Next-generation additive manufacturing technologies will enable novel, low-weight, high-
performance aircraft structures. Topology optimization techniques can be used to obtain uncon-
ventional internal aircraft wing structures that can be manufactured using additive methods which
depart significantly from conventional rib-spar wing constructions. However, there are significant
issues that must be overcome when applying traditional topology optimization techniques to the de-
sign of aerospace structures. These challenges include efficiently solving large-scale design problems,
and applying buckling criteria within a topology optimization design formulation. In this paper, we
seek to address these issues by applying a scalable topology optimization method to the undeformed
Common Research Model (uCRM) wing with buckling constraints applied to the skins of the wing-
box. The proposed approach uses a multigrid-preconditioned Krylov method to solve the large-scale
finite element analysis problem, coupled with a parallel interior-point optimizer to solve the large-
scale constrained design optimization problem. This proposed method is applied to two different
optimization problems: mass-constrained compliance minimization, and mass-constrained buckling-
load maximization. In addition, we apply a segment-wise topology optimization design strategy to the
uCRM wingbox.

1. Introduction

Additive manufacturing will enable the construction of unconventional internal wing structures that may offer
performance improvements over rib-spar constructions. Topology optimization techniques can be used to design these
unconventional structures free from any preconceptions about the structural layout. However, high aspect-ratio wings
present computational challenges to conventional density-based topology optimization methods that require a spatially
uniform discretization of the problem domain. As a result, conventional topology optimization methods produce large-
scale design optimization problems when applied to high aspect-ratio domains, such as aircraft wings.

Industrial applications of topology optimization have primarily focused on component-scale structural design using
compliance-based methods [20, 11, 7]. Several authors have presented methods for compliance minimization with
either aerodynamic constraints or mass constraints [22, 13]. Due to the low volume fraction of aerospace structures,
and their resulting slenderness, buckling and strength are key design requirements.

To design low-weight, high-performance aerospace structures, we develop methods for large-scale topology prob-
lems that include buckling, strength and stiffness requirements. To meet the demands of low-volume fraction aerospace
structures, we focus on topology optimization methods that are suitable for problems with greater than 10° design
variables. To successfully apply topology optimization at this scale, we use both a parallel analysis method and a
parallel optimization algorithm presented by Kennedy [15]. We focus on two different optimization problems: mass-
constrained compliance minimization, and mass-constrained buckling optimization. We apply these methods to the
undeformed Common Research Model (uCRM) wing configuration [19] subject to point loads and fixed aerodynamic
loads.

The remainder of this paper is structured as follows: In Section II, we give an overview of the literature on
structural and large-scale topology optimization. In Section III, we describe the topology parameterization that we use
in this work. In Section IV, we present the parallel multigrid method that we use as the preconditioner for the large-
scale structural analysis problem. In Section V, we present the formulation of two different optimization problems, as
well as a description of the interior point optimizer and the structural and aerodynamic analysis models. In Section
VI, we present the compliance minimization, as well as the buckling optimization results that we obtain using the
aforementioned methods. In Section VII, we present an alternate segment-based approach to the design of the u~CRM
structure. Finally, in Section VIII, we present the conclusions from our work.
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II. Overview of large-scale topology optimization techniques

Topology optimization techniques are often used in a preliminary design setting to obtain designs without con-
straints on structural geometry or topology. Aerospace companies have increasingly used topology optimization for
preliminary component-scale design of aircraft structures. Airbus employed topology optimization techniques in the
redesign of A380 components such as the inboard inner fixed leading edge ribs, inboard outer fixed leading edge
ribs and the fuselage door intercostals, leading to weight savings on the order of 10° kg per aircraft [20, 11]. Simi-
larly, Bombardier incorporated topology optimization in the design of its passenger jet’s wingbox ribs, resulting in a
reduction of the weight of the component by 10% [7].

Within academia, some authors have focused on large-scale topology optimization applications. Borrvall and
Petersson [5] developed techniques for large-scale topology optimization of 3D elastic continua using regularized
density control by using parallel computing techniques to solve problems with up to 663 000 design variables. Amir
et al. [2] used an algebraic multigrid method as a preconditioner to solve large 3D compliance topology optimization
problems with up to 400 000 design variables. Aage et al. [1] developed a framework using PETSc for compliance-
based large-scale topology optimization and applied this framework to a cantilever beam with 27.6 million design
variables. More recently, Kennedy [15] used a multigrid-preconditioned Krylov method in conjunction with parallel
interior point optimization method to solve a mass constrained compliance minimization with 5.24 million design
variables, demonstrating optimization parallelism and scalability.

Other authors have focused on applying topology optimization techniques to multidisciplinary design of full-
scale aircraft structures. For example, in one of the first applications of topology-based wing design, Balabanov and
Haftka [3] modeled the internal structure of the wing as a ground structure consisting of over 3000 truss elements to
determine the number of spars and ribs in the wing. Later, Maute and Allen [22] considered a medium size topology
problem, with O(10°) degrees of freedom, where the internal structure of the wing is modeled by a three-layered
plate coupled with aerodynamic loads. More recently, James et al. [13] presented a multidisciplinary framework
for performing shape and topology optimization on a flexible wing structure with a total of 71 500 design variables,
which showed that concurrent aerostructural optimization of a wing yields a design that achieves a 42% drag reduction
compared with a sequentially optimized wing. Dunning et al. [8] presented a multidisciplinary framework that included
coupled aerodynamic loads and performed topology optimization using the level-set method. This framework was
used to optimize a straight, linearly tapered 3D wing, producing unconventional results compared to traditional spar-
rib configurations. Note that in these applications, the number of topology variables is considered to be in the moderate
range.

These multidisciplinary applications have used compliance or stiffness-based criteria. Other authors have focused
on applying buckling constraints to slender structures loaded in-plane. Neves et al. [23] presented a method to include
a buckling criterion within the context of a topology optimization using a linear buckling model. Neves et al. found that
during the optimization, low-density regions buckled at artificially low critical loads. Several authors have presented
methods to overcome this issue. Neves et al. [23] suggested neglecting the contributions to the geometric stiffness ma-
trix from low density regions. Lindgaard and Dahl [21] found that for linear buckling, different penalization schemes
for the stiffness matrix and geometric stiffness matrix alleviated the artificial buckling issues. In addition, Lindgaard
and Dahl proposed using one material interpolation scheme for all tangent stiffness matrices as well as the residuals.
More recently, Gao and Ma [10] proposed a method where both low-order and high-order artificial buckling modes
are identified by comparing the modal strain energy of a low density regions to the total modal strain energy.

Some authors have also included stress constraints within topology optimization. Verbart et al. [33] presented a
level set approach for stress-constrained topology optimization. Their approach used consistent sensitivity analysis and
a division of stress constraints into different groups. Similarly, Holmberg et al. [12] used a stress constraint clustering
approach which, depending on the number of clusters, can be used to vary the control on the local stresses without
computing the stresses on every element. In both cases, the methods were applied to 2D problems.

III. Topology optimization parameterization

In this section, we describe the topology design parameterization techniques that are applied to the topology
optimization of aircraft wing structures. We use a single material formulation for compliance design problems and a
two-thickness formulation for buckling design.

For the compliance-minimization problems, we use a solid-void formulation, where the stiffness-density relations
are expressed using either the Solid Isotropic Material with Penalization (SIMP) [4] interpolation or the Rationale
Approximation of Material Properties (RAMP) interpolation [30]. Both the SIMP and RAMP formulations can be
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expressed as follows:
Cj(x) = Cw;(x),
p;(x) = pXj,
where x € RY are the design variables, x; is the j-th component of x, w;(x) is a design-dependent weight that depends
on the type of penalization, and C;(x) and p;(x) are the parameterized constitutive matrix and density, respectively,

and C and p are the constitutive matrix and density of the full material. For SIMP penalization, the design-dependent
weight function w(x) is

(D

wi(x) =x7,
where p is the SIMP exponent, whereas for RAMP penalization, the design-dependent weight function takes the form:
Xj

Wi = 0 )

where p is the RAMP parameter.

Each element in the domain is associated with a single design variable which is restricted to the range x; € [€, 1],
where € is a small but finite value. A solution of the topology optimization problem ideally satisfies the condition
that the design variables are nearly discrete such that x; € {€,1}. The SIMP or RAMP penalization force the design
to a nearly discrete solution by favoring design points that are either solid or void material with x; € {&,1}, rather
than intermediate designs. At intermediate points, the SIMP or RAMP scheme imposes a penalization that reduces
the stiffness-to-mass ratio, making the intermediate design less-favorable compared to the stiffness-to-mass ratio of a
discrete design.

For compliance-minimization, we use a RAMP penalization scheme. This is chosen instead of SIMP penalization
due to the non-zero derivative of the penalization with respect to the design variable at x; = 0. This property often
forces SIMP-based optimizations to stall when x; ~ €. For the results shown below, the values of € and p are chosen
to be 1073 and p = 5, respectively.

For the buckling design problems described below, we modify the parameterization (1) to account for a selection
between two material thicknesses values given by 7y and #;, where 7y < #;. In this case, the constitutive parameteriza-
tion (1) is modified to interpolate between the discrete thicknesses 7y and #; as follows:

Xj
G = T ) @)
p;(x) = px;,

where x € [¢,1]V and p is the RAMP-penalization factor. In this formulation x; &~ € corresponds to the smaller
thickness, 7o, while x; = 1, corresponds to the larger thickness ¢;. Similarly to the compliance-minimization case, the
values of € and p are chosen to be 1073 and p = 3, respectively.

The topology optimization parameterizations shown above exhibit mesh-dependence and checkerboard instabili-
ties that are common to many topology optimization methods. To overcome these issues, we apply a spatial filter that
distributes the stiffness contribution from one design variable spatially across several adjacent elements. This spatial
filter is based on the work of Bruns and Tortorelli [6] and written as follows:

. 1
%= —Y (ro—rij)x;, 3)

Si jeT,

where X; are the filtered design variables. The conic spatial filter of length r( uses the spatial distance, r;; between the
centroids of elements i and j. For each element, the filter uses information from adjacent elements given by the set of
indices I; fori = 1,...,N. These sets are defined as follows:

Ii:{jEN|I‘,’j <r}.
Finally, the filter is normalized such that the weights on adjacent design variables do not exceed unity using the scalar

quantity:
S;i = Z(}’() — I‘l'j).
JEL;
The filter smooths the local effect of a design variable over adjacent elements. In all the penalization calculations (1)
and (2), the filtered variables replace the use of the direct variables.
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IV. Parallel solution of large-scale linear systems

In this work, we solve the large linear system of governing equations arising from the finite-element discretization
of the wing structure at each optimization iteration. Due to the size of the finite-element mesh, it is not practical to
solve this linear system using serial methods. Instead, we use a parallel multigrid algorithm that has been success-
fully applied to large-scale multimaterial optimization problems [15]. Multigrid algorithms have also been applied by
other researchers to large-scale topology optimization problems [2, 1]. For this work, we use a geometric multigrid-
preconditioned Krylov subspace method to solve the finite-element governing equations. Using multigrid as a pre-
conditioner allows for both algorithmic and parallel scalability. Due to the ease of implementation within the existing
finite element analysis and design framework [17], we have chosen geometric multigrid instead of algebraic multigrid.

Geometric multigrid is a multilevel iterative method that operates on a set of meshes with different levels of
refinement [35, 26]. These meshes are linked through the prolongation and restriction operators, which transfer the
solution and residual between mesh levels. At each level that is not the coarsest mesh, a smoothing operation is carried
out through a simple iterative method such as Symmetric Successive Over-Relaxation (SSOR) to attenuate the high
frequency solution error. At the coarsest mesh, a coarse grid correction is carried out by solving the relatively small
linear system directly, eliminating the lowest frequency errors. Within this work, we take advantage of the efficient
parallel direct solution method presented by Kennedy and Martins [17]. This direct solution method uses a Schur-
complement based factorization that scales well with the number of processors. Since the direct solution method is
applied only on the coarsest mesh, the size of the linear system is relatively small and the direct computation can
be carried out efficiently. Using the multigrid algorithm as the preconditioner, we can solve the large linear system
using FGMRES(80) [25, 27]. A detailed description of the implementation of the multigrid algorithm is contained
in Kennedy [15].

V. Large-scale parallel topology optimization framework

In this section, we present the components of our topology optimization framework, as well as the uCRM wingbox
used in this study.

A. Interior-Point Method

We use an interior-point method, called ParOpt [15], to solve the large-scale design optimization problems within this
work. Interior-point methods are well-established robust optimization algorithms that have been applied to a wide
range of problems [34, 9]. To achieve good parallel performance, ParOpt stores the design variables, gradient vectors,
and Jacobian matrices in a distributed format. ParOpt takes special advantage of multimaterial parameterizations
that employ element-based design variables that are aligned with the domain decomposition of the underlying finite-
element problem [17]. This element-based scheme, and the structure of the sparse constraints, enables the efficient
implementation of a parallel interior-point method for problems with millions of design variables.

B. Aerodynamic Loading

In this work we prescribe a constant load that acts on the structural mesh, neglecting the aeroelastic coupling between
the aerodynamic loads and structural deformation. The fixed aerodynamic loads on the structural mesh are determined
by TriPan [18]. TriPan is an unstructured three-dimensional panel method that can model the aerodynamics of inviscid,
external lifting flows governed by the Prandtl-Glauert equation, using constant source and doublet singularity elements
distributed over the lifting surface. Using TriPan, we determine the aerodynamic loading on the wing for certain flight
conditions, which is used as a fixed aerodynamic loading during the optimization. In this case, the fixed aerodynamic
loading was determined at 1g cruise condition.

C. uCRM Structural Mesh

The Common Research Model (CRM) is a representative aircraft geometry for a modern, long-range, transonic aircraft
first developed by Vassberg et al. [32] for the purpose of validating the drag prediction capabilities of CFD codes. The
geometry of the CRM has a built-in 1g cruise shape, which is not well-suited for aerostructural analysis or design. To
address this issue, Kenway et al. [19] proposed the undeformed CRM (uCRM) geometry, where the authors used an
inverse design method to remove the built-in 1g-deflection of the original CRM. Kenway et al. [19] further verified that
the uCRM wing, shown in Figure 1, is a viable model for aerostructural analysis and design. There are two variants
to the uCRM configuration: the uCRM-9, which has an aspect ratio of 9, and the uCRM-13.5, which has an aspect
ratio of 13.5. The difference in the planform of the wing is shown in 2. These uCRM geometries serve as our baseline
design configuration.
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The finite-element structural mesh generated for the topology optimization problem consists of eight-noded, hexa-
hedral elements that fill the entire design domain of the uCRM wing. Both wingbox volume structures are discretized
into 136 elements chord-wise, 312 elements span-wise and 8 elements through the thickness, with a total of 339456
elements in both structural meshes. Figure 2 shows the planform of the aerodynamic surface. Figures 3 shows the
two wingboxes that are generated from the aerodynamic surfaces. Note that the aspect ratio of the two wingboxes are
larger than their corresponding outer-mold line.

Figure 1: Surface mesh of the uCRM-9 wing

Figure 2: Comparison in the planform between uCRM-9 (blue) and uCRM-13.5 (red)

Figure 3: uCRM aerodynamic surface with u~CRM-9 (red) and uCRM-13.5 (blue) wingbox

1. uCRM Wing Geometry and Material Properties

The dimension of the baseline u~CRM-9 and uCRM-13.5 wing configurations are shown in Figure 4. The uCRM-9
has a semi-span of 29.4 m and the full scale uCRM-13.5 has a semi-span of 36.0 m. However, the wingbox for the
uCRM-13.5 is at 10% scale, which results in a scaled semi-span of 3.6 m. The loading for the uCRM-9 and uCRM-
13.5 are different. For the uCRM-9 wing, the loads are static aerodynamic loads determined by TriPan as described in
Section B. For the 10% scale uCRM-13.5, the loading condition is a single point load at the tip of the wing.

D. Problem Formulations

In this work, we apply the large-scale topology optimization methodology described above to two different design
problems: mass-constrained buckling optimization and mass-constrained compliance minimization.
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Figure 4: Dimension of the uCRM-9 wing

E (GPa) 70
Density(kg/m3) 2700
Poisson Ratio 0.3

Table 1: Material properties used in topology optimization

1.  Mass-Constrained Compliance Minimization Topology Optimization

The mass-constrained compliance minimization problem is formulated as follows:

minimize c(x) = %qu
with respect to X
such that x; <x<x, 4)

Cs (X) = Mfixed — m(X) >0
governed by Kx)u=f

where ¢(x) is the compliance of the structure, u are the state variables, and x are the design variables. In addition, the
mass of the structure m(x) is subjected to a scalar fixed-mass constraint mgxeq = fyV Pmax, Where fy is the volume
fraction, fixed at 40%, and V is the volume occupied by the mesh.

E. Mass-Constrained Buckling Topology Optimization
The mass-constrained buckling problem requires the solution of the following eigenvalue problem:

[K(x) +AG(x,up)]u=0 ®)

where K(x) is the stiffness matrix, G(x,u,) is the geometric stiffness matrix, A is the eigenvalue, u is the eigenvector,
u,, is the load path, and x are the design variables. The load path u,, is obtained from the solution to the auxiliary linear
problem K(x)up = f.

To optimize the structure for buckling, the minimum eigenvalue of (5) is maximized. However, eigenvalue cross-
over is of concern when using this type of design formulation [28]. Cross-over occurs when the mode associated with
the minimum eigenvalue changes due to a change in the design variables. This produces a local discontinuity in the
slope of the gradient of the eigenvalue. To overcome this issue, we use an aggregation technique that aggregates the
lowest n eigenvalues, where 7 is a chosen parameter. The mass-constrained buckling problem is formulated as follows:

maximize cks(Aj(x)) j=1,...,n
with respect to X

such that X <x <Xy (6)

governed by K(x
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where cks is the KS aggregation, m(x) is the mass of the structure, u is an eigenvector, and x are the design variables.
We set mgxeq to be the mass due to the average of the two candidate thicknesses. The constraints are aggregated using
the aggregation methods presented by Kennedy and Hicken [16] and Kennedy [14].

To handle multiple load cases, we use a min-max formulation that employs a bound-variable, 8 [31, 24]. This
formulation enables the optimization of the wing skin structure subject to both compressive and shear loads. The
resulting design optimization problem can be written as follows:

min —B
with respect to x, B
such that x; <x <x,
Cs (X) = Mfixed — m(X) >0
B < exs(A5™™ (x)) @
B < eks(A" (x))
governed by K(x)up =f

[K(x) +AG(x,up)]u=0

Lastly, we include stress constraints within the buckling optimization by extending (7) as shown below:

min —B
with respect to x, B
such that x; <x<x,

c(X) = Mifixea —m(x) >0
B < exs(A7™ (x))
B < eks(A3" (x)) ®)
G(Xj);uf;p) <l
OovM
governed by K(x)up =f
[K(x) +AG(x,up)|u=0
K(x)us =f

ks (

where G(Xj) is the stress at x;, oy is the von-Mises stress of the structure, p is the density, uy are the state variables.
As shown in the above optimization problem formulations (4), (6), (7) and (8), the design variables x are subject to
both lower and upper bounds on their values which are x; = 1073, and x,, = 1, respectively.

While we work with the volume mesh of the wing in the case of compliance-minimization, buckling in aerospace
structures primarily occurs in the skin of the wingbox. Therefore, we use a shell model of the wing surface with two
different geometries: a flat plate model and a segment of the upper skin of the u~CRM-13.5 shown in Figure 5. Also
shown in Figure 5 is the curvature of the uCRM skin mesh.

The buckling optimization of these 2D domains involves a selection between two candidate thickness as illustrated
in Table 2. Both candidates are composed of the same material, whose properties are listed in Table 1.

Thickness (mm)
o 2.0
n 8.0

Table 2: Candidate thickness used in topology optimization

To impose buckling loads on the flat plate and the uCRM skin, we use displacement boundary conditions on the
edges of the mesh, instead of applying forces, to obtain either a pure compressive loading or a pure shear loading.
These boundary conditions are illustrated in Figure 6 and Figure 7, respectively.
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Figure 7: uCRM-13.5 skin under buckling displacement conditions

constrained load case, we applied a pressure loading on the surface along the z-axis such that the

For the stress
stress constraint is active.
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VI. Results

In this section, we present the results from the mass-constrained compliance minimization and mass-constrained
buckling optimization problems. We solved these optimization problems using design variable parameterization as
presented in Section III, where the different formulation for compliance minimization as well as buckling optimiza-
tion are presented. All results utilize the spatial filter (3), to alleviate any numerical instabilities or checkerboard
patterns [29].

A. uCRM-9 and uCRM-13.5 Wingbox Designs

Figure 8 shows the optimized design for uCRM-9 wingbox under static aerodynamic load, while Figure 9 shows the
optimized design for the 10% scale u~CRM-13.5 wingbox subjected to a point load at the tip.

/)-7

Density

0.05 0.2 0.35 05 0.65 0.8 0.95

l\ . ~\

NS ST

Figure 8: uCRM-9 wingbox optimized for static aerodynamic loading

Density

0.15 025 035 045 055 0.65 0.75 0.85 0.95

——

-~

Cross Section Spanwise

@‘\\\\\\ R

Figure 9: uCRM-13.5 wingbox optimized for tip point loading

The results illustrate the effect of the loading on the final optimized designs. For the design under static aerody-
namic loading, most of the material distribution is placed inboard of the wing, given that the loading on the surface
is the largest at the root. On the other hand, the optimized uCRM-13.5 design has more material placed near the
tip of the wing due to the location of the point load. In both cases, the optimized wingbox designs are not discrete
0-1 solutions. The through-thickness distribution of material in both wingboxes mimics a composite structure. The
internal intermediate stiffness material acts in a similar manner to a soft-core with the top and bottom surfaces acting
as stiffer face-sheets. This configuration maximizes the bending stiffness of the wing for a given fixed mass.

B. Optimized Design of Flat Plate and uCRM-13.5 Skin

Next, we consider the results from buckling optimization of the wingbox skin. The buckling optimization formula-
tion (7) includes an unspecified number of eigenvalues within the KS aggregation function. To ensure that the design
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is not sensitive to the number of eigenvalues, we first investigate how the optimized design changes as the number of
aggregated eigenvalues increases.

Function evaluations
1800
1750
1700 .
1650
1600
1550

1500

4 6 910 20

Number of eigenvalues included
Figure 10: Design changes drastically for less than 10 eigenvalues included

Figure 10 shows the number of function evaluations required for the optimization and the final designs obtained
as the number of aggregated eigenvalues increases. For designs with less than ten eigenvalues, the number of axial
members varies. Once the number of aggregated eigenvalues exceeds ten, the number and shape of the members in the
optimized design remains relatively fixed. Furthermore, increasing the number of eigenvalues beyond ten results in a
greater number of function evaluations required to obtain the optimized design. Therefore, the buckling optimization
problems presented here, both for the flat plate as well as the uCRM skin, include the ten lowest eigenvalues.

Figure 11 shows the optimized design for the flat plate subjected to both buckling and shear displacement boundary
conditions, as well as the buckling mode for the optimized design. Since the mass constraint fixes the total plate mass
at the average of the two candidate thicknesses, the final design consists of equal areas of both candidate thicknesses.
Furthermore, the thicker candidate material is placed parallel to the compressive load.

Figure 12 shows the optimized design for the uCRM skin segment. The skin segment is extracted from the top
skin of the uCRM-13.5 wingbox as shown in Figure 13 and Figure 14. The skin segment is subjected to both buckling
and shear displacement boundary conditions. Due to the geometric skew of the skin and the curvature of the segment,
the optimized design is different from the previous flat plate design.

Lastly, Figure 15 shows the results for buckling optimization with stress constraints for the flat plate and uCRM
skin segment. Due to the stress constraint which smooths out any stress concentration, we see different thickness
distribution compared to Figures 11 and 12.
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Wy

Thickness in mm

_ 0.01 00040 00200080014

25335445555665775

(a) Optimized design obtained after 500 iterations (b) First buckling mode of optimized design
Figure 11: Optimized design of flat plate and its first buckling mode

Thickness of uCRM skin in m

25603 35603 45603 55603 65603 75603

Figure 12: Optimized design of uCRM skin

Thickness in mm

25 35 45 55 65 75

Figure 15: Optimized design with stress constraints of flat plate and uCRM skin segment, respectively.
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-

Figure 13: Optimized design of uCRM skin on a wing

N g

Figure 14: Enlarged view of optimized skin segment

VII. Segment-Wise Topology Optimization

The results from Section VI illustrate the demanding computational requirements needed to obtain an optimized
wingbox topology on a full-scale mesh with sufficient resolution to obtain through-thickness structural features. In
this section, we present an alternate segment-wise approach which seeks to address these challenges.

Elastic axis

r W =
VLN

Figure 16: Illustration of Segment-Wise Topology Optimization

Figure 16 illustrates the segment-wise topology optimization approach. In this method, the full-scale wingbox
is divided into segments which are optimized independently. As shown in Figure 17, loads on each segment of the
wingbox can be estimated independently since the overall wing is statically determinant. This segment-based load
determination procedure is illustrated below for an elliptic lift distribution. The extension of this procedure to general,
non-elliptic lift distributions poses no difficulty.

The elliptic lift distribution over a wing can be expressed as follows:

2
Li)="n1- (?) ©)
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Figure 17: Lift distribution model on u~CRM-13.5 wing

where L is the total lift, L'(y) is the lift per unit span, W is the weight of the semi-span of the wing, and b/2 is the
semi-span. The moment, torque and shear acting at a station yy can be determined by integrating the lift distribution
as follows:

b/2

M (yo) = /y (=o)L (y)dy
b/2

T,(y0) = / (y = yo) tan(A)L (y)dy (10)
b/2

Va(yo) = L'(y)dy

Yo

where M (yo), Ty (y0), and V(yo) are the moment, torque, and shear, respectively, and A is the sweep of the wing.

Instead of treating the moment, torque and shear resultants as distributed loads, we impose them as point forces.
While the shear loads can be applied directly to the segment, the moment and torque resultants must be resolved into
equivalent point forces, as shown in Figure 18. Figure 18 also illustrates the boundary conditions, which are applied
to the segment to remove rigid body translation and rotation. Lastly, crushing loads are applied as shown in the figure
to simulate the effects of aerodynamic loading.

Moment
<— Torsion

<— Crushing Loads

Figure 18: Application of loads to wing segment

Each segment in the wingbox is discretized with 128 chord-wise elements, 64 span-wise elements and 64 through
thickness elements, resulting in a mesh with just over 600000 elements. A single material formulation is used as
described above. The compliance-minimization formulation is used based on the prior mass-constrained compliance
design formulation (4). Here, we set the mass constraint at 20% of the total solid domain.

The results from the topology optimization of a single segment are shown in Figure 19. The segment-based design
method clearly enables better-resolved through thickness structural features with truss-like structure.

130f 17

American Institute of Aeronautics and Astronautics



Downloaded by Melissa Rivers on January 30, 2018 | http://arc.aiaa.org | DOI: 10.2514/6.2016-0939

Density

0.05 0.2 0.35 0.5 0.65 0.8 0.95

Figure 19: Segment-Wise Optimized Design
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Figure 20: Chord-Wise Optimized Design
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Figure 21: Span-Wise Optimized Design
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Figure 22: Thickness-Wise Optimized Design

Figures 20, 21 and 22 show the internal structure in the chord-wise, span-wise and through-thickness directions,
respectively. The optimized design has material distributed primarily to the surfaces of the wingbox segment, with no
internal structure. Figure 20 clearly shows truss-like structures formed at either ends of the segment, while the center
remains void in the chord-wise direction. Similarly, Figure 21 shows that the span-wise direction has interesting
features at each end of the segment due to the crushing aerodynamic loads. Finally, Figure 22 shows that the optimizer
has placed most of the material at the top and bottom surface, forming a skin-like structure for maximum bending
stiffness.

VIII. Conclusions

In this paper, we applied large-scale topology optimization techniques to the design of an additively manufac-
tured wingbox structure for the uCRM configuration. Slender, high-aspect ratio aerospace structures place demanding
computational requirements on density-based topology optimization methods. To enable the efficient solution of
these types of large-scale problems, we presented a parallel analysis and design optimization framework. We applied
this framework to mass-constrained compliance minimization of the full-scale u~CRM-9 and uCRM-13.5 wingboxes.
These full-scale designs exhibited through-thickness intermediate density material, without resolved structural fea-
tures. Next, we demonstrated the proposed optimization method on buckling-load maximization problems. We found
that it was necessary to aggregate more than ten eigenvalues to obtain good panel designs. Finally, we proposed and
demonstrated a segment-wise topology optimization technique for wingbox design, which enabled greater through-
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thickness resolution of the internal wingbox structure. Results from the segment-based optimization placed most of
the solid elements at the extreme surfaces with no intermediate material. Future work will include implementing the
segment-wise optimization technique for the design of the entire wing.
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